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Abstract— This paper introduces a new approach to robot 

collision avoidance by using the divide and conquer algorithm to 

find the closest pairs of objects. Ensuring robots navigate safely 

without collisions is essential, especially as they operate in 

increasingly complex environments. Many existing methods are 

often slow or struggle to handle a large number of obstacles 

effectively. Our method breaks down the problem into smaller 

parts, solves each part separately, and then combines the results. 

This makes the process faster and more efficient. We tested our 

approach in different simulated settings and found that it 

improves both speed and accuracy. This paper explains how the 

algorithm works, how we implemented it, and how well it 

performed in our tests, showing its promise for real-world robotic 

applications. 

Keywords— Robot collision avoidance, divide and conquer 

algorithm, closest pair of points problem, time complexity 

I.  INTRODUCTION 

Robotic technology has advanced significantly, leading to a 
new era where robots must navigate complex environments 
safely and efficiently. A critical component of this navigation is 
collision avoidance. Collision avoidance is defined, according to 
various sources, as the ability to prevent collisions with 
obstacles while moving through an environment. The primary 
focus of this paper is to enhance collision avoidance by applying 
the divide and conquer algorithm to identify the closest pairs of 
objects. Identifying these pairs is crucial because it allows the 
robot to predict potential collision points and adjust its path 
accordingly. 

Traditional methods for collision avoidance, such as 
potential field approaches and reactive techniques, often 
encounter limitations in terms of computational efficiency and 
scalability. These methods can struggle to process large numbers 
of obstacles quickly enough to ensure real-time responsiveness, 
potentially leading to suboptimal navigation paths or collisions. 
Our approach addresses these challenges by breaking down the 
collision avoidance problem into smaller, more manageable 
parts, solving each part individually, and then combining the 
results. This strategy improves both the speed and efficiency of 
the process. 

 

In this paper, we will not only explain the divide and conquer 
algorithm but also demonstrate its implementation and results 
through source code examples and experimental data. Our goal 
is to show how this algorithm can be effectively used in real-
world robotic applications, enhancing both safety and 
efficiency. We will discuss the time complexity of the algorithm, 
which is crucial for understanding and analyzing its 
performance. 

The role of the divide and conquer algorithm in our approach 
is to systematically decompose the problem of collision 
avoidance. By focusing on the closest pair of objects, the 
algorithm allows the robot to navigate through environments 
more effectively. The divide and conquer strategy involves 
splitting the environment into smaller sections, processing each 
section to find close object pairs, and then merging the results to 
form a comprehensive solution. This method ensures that the 
robot can handle complex environments with numerous 
obstacles efficiently. 

In the following sections, we will describe the divide and 
conquer algorithm in detail (Section II), Propose algorithm for 
the program containing each step of implementation (Section 
III), Implements the algorithm to a real program using python 
(Section IV), and discuss the algorithm performance compared 
to another algorithm (Section V), and analyses the cause of the 
algorithm performance comparison (Section VI). Our research 
shows that this approach not only improves computational 
efficiency but also enhances the accuracy of collision avoidance 
in dynamic environments. 
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II. THEORETICAL BASIS 

A. Divide and Conquer 

 
Fig 2.1 Divide and Conquer Algorithm 

Source: https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-

algorithm-data-structure-and-algorithm-tutorials/ 

 

The divide and conquer algorithm is a fundamental paradigm in 

computer science, renowned for its efficiency in solving 

complex problems by breaking them down into simpler 

subproblems. The divide and conquer approach involves three 

main steps: 

1) Divide 

 The first step in the divide and conquer paradigm is to divide 

the original problem into smaller, independent subproblems. 

This division is usually performed in a manner that the 

subproblems are of approximately equal size, ensuring a 

balanced workload. In the context of the closest pair problem, 

the set of points (or objects) is typically divided based on a 

median line. 

2) Conquer. 

Once the problem is divided into smaller subproblems, each 

subproblem is solved recursively. The recursion continues until 

the subproblems are small enough to be solved directly. In 

many cases, this direct solution is straightforward and 

computationally inexpensive 

3) Combine 

The final step involves combining the solutions of the 

subproblems to form the solution to the original problem. This 

is often the most intricate part of the divide and conquer 

strategy, as it requires careful consideration to ensure that the 

combined solution is correct and efficient. 

B. Brute Force 

Brute force is a straightforward method for solving problems by 

exhaustively searching through all possible solutions and 

selecting the best one. This approach involves systematically 

checking every possible solution and evaluating its quality 

against a predefined criterion. While conceptually simple, brute 

force algorithms can be inefficient, especially for large problem 

instances, as they require examining every possible solution. 

 

Despite its simplicity, brute force can be useful for solving 

small-scale problems or serving as a benchmark for evaluating 

the performance of more sophisticated algorithms. In some 

cases, optimizations can be applied to brute force algorithms to 

improve their efficiency, such as pruning branches of the search 

tree or using heuristic techniques to guide the search. 

C. Euclidean Distance 

Euclidean distance is a measure of the straight-line distance 

between two points in a Euclidean space. It is calculated using 

the Pythagorean theorem, which states that the square of the 

hypotenuse (the side opposite the right angle) of a right triangle 

is equal to the sum of the squares of the other two sides. In two-

dimensional space, the Euclidean distance between points 

(𝑥1, 𝑦1)  and (𝑥2, 𝑦2) is given by the formula: 

 

𝑑 =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2  

 

Euclidean distance is commonly used in various fields, 

including mathematics, physics, and computer science, as a 

measure of similarity or dissimilarity between points or 

objects in space. It serves as a fundamental tool in tasks such 

as clustering, classification, and optimization. 

D. Robot Collision Avoidance (RCA) 

 
Fig 2.2 Robot Collision Avoidance 

Source: https://www.intechopen.com/chapters/19455 
 

Robot collision avoidance is a critical aspect of robotic 

navigation, particularly in environments where robots operate 

alongside humans or other objects. The primary goal of 

collision avoidance is to prevent robots from colliding with 

obstacles in their environment, thereby ensuring the safety of 

both the robot and its surroundings. 

In dynamic environments, such as warehouses, factories, or 

public spaces, robots must navigate autonomously while 

avoiding obstacles that may appear unexpectedly. Collision 

avoidance algorithms continuously monitor the robot's 

surroundings using sensors, cameras, or other perception 

systems. These algorithms analyse the sensor data to detect 

potential obstacles and determine the robot's path to avoid 

collisions. 

Several approaches can be used for robot collision avoidance, 

including reactive methods, potential field methods, and model-

based planning. Reactive methods rely on simple rules or 

behaviours to respond to immediate obstacles in the robot's 

path. Potential field methods model the robot's environment as 

a field of attractive and repulsive forces, guiding the robot away 

from obstacles. Model-based planning algorithms use 

https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-algorithm-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-algorithm-data-structure-and-algorithm-tutorials/
https://www.intechopen.com/chapters/19455
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predictive models of the robot's environment to plan collision-

free paths. 

Effective collision avoidance algorithms balance safety, 

efficiency, and responsiveness. They must be capable of 

adapting to changing environments and unpredictable obstacles 

while ensuring that the robot can navigate efficiently towards 

its goal. 

E. Closest Pair of Points Problem 

 
Fig 2.3 Closes Pair of Points Problem 

Source: https://medium.com/@shenhuang_21425/improved-closest-pair-of-

points-37e79ade474d 

 

The closest pair of points problem is a fundamental 

computational problem with applications in various fields, 

including computational geometry, pattern recognition, and 

robotics. Given a set of 𝑛 points in a two-dimensional space, 

the goal is to identify the pair of points with the smallest 

distance between them. 

Efficiently solving the closest pair problem is essential for 

optimizing robotic navigation systems and ensuring safe 

operation in dynamic environments. In the context of robot 

collision avoidance, identifying the closest pairs of obstacles 

allows the robot to predict potential collision points and adjust 

its path accordingly. 

Several algorithms exist for solving the closest pair problem, 

with the divide and conquer approach being one of the most 

efficient. The divide and conquer algorithm divides the problem 

into smaller subproblems, recursively solves each subproblem, 

and combines the solutions to find the overall closest pair of 

points. 

Other algorithms for solving the closest pair problem include 

the brute force method, which involves comparing the distance 

between every pair of points and selecting the pair with the 

smallest distance. While brute force is simple, it is less efficient 

than divide and conquer for large datasets. 

Efficiently solving the closest pair problem is crucial for real-

time robotic applications, where quick decision-making is 

essential for avoiding collisions and navigating complex 

environments. By leveraging algorithms such as divide and 

conquer, robots can effectively identify and avoid potential 

collision points, ensuring safe and efficient navigation. 

F. Time Complexity 

In theoretical computer science, the time complexity is the  

computational complexity that describes the amount of  

computer time it takes to run an algorithm. Time complexity  

is commonly estimated by counting the number of  

elementary operations performed by the algorithm,  

supposing that each elementary operation takes a fixed  

amount of time to perform. The asymptotic notation, can be  

used to measure time complexity of algorithm which are  

Big-O notation, Omega notation, Theta notation. 

1) Big-O notation (O-notation) 

Big-O notation represents the upper bound of the running  

time of an algorithm. Therefore, it gives the worst-case  

complexity of an algorithm. If 𝑓(𝑛) describes the running  

time of an algorithm, 𝑓(𝑛) is 𝑂(𝑔(𝑛)) if there exist a positive  

constant 𝐶 and 𝑛0 such that, 0 ≤  𝑓(𝑛)  ≤  𝑐𝑔(𝑛)  

for all 𝑛 ≥  𝑛0 

 

 
Fig 2.4 Big-O notation visualization 

Source: https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-

complexity-analysis-of-algorithms/ 

 

2) Omega notation (Ω-notation) 

Omega notation represents the lower bound of the  

running time of an algorithm. Thus, it provides the best case  

complexity of an algorithm. Let 𝑔 and 𝑓 be the function from  

the set of natural numbers to itself. The function 𝑓 is said to  

be Ω(𝑔), if there is a constant 𝑐 >  0 and a natural number n0  

such that 𝑐 ∗ 𝑔(𝑛)  ≤  𝑓(𝑛), 

for all 𝑛 ≥  𝑛0 

 

https://medium.com/@shenhuang_21425/improved-closest-pair-of-points-37e79ade474d
https://medium.com/@shenhuang_21425/improved-closest-pair-of-points-37e79ade474d
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
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Fig 2.5 Omega notation visualization 
Source: https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-

complexity-analysis-of-algorithms/ 

 

3) Theta notation (Θ-notation) 

Theta notation represents the upper and the lower bound  

of the running time of an algorithm, it is used for analysing  

the average-case complexity of an algorithm. Let 𝑔 and 𝑓 be  

the function from the set of natural numbers to itself. The  

function 𝑓 is said to be 𝛩(𝑔), if there are constants 𝑐1, 𝑐2 >  0  
and a natural number 𝑛0 such that 𝑐1 ∗  𝑔(𝑛)  ≤  𝑓(𝑛)  ≤  𝑐2 ∗ 
𝑔(𝑛) , for all 𝑛 ≥  𝑛0 

 
Fig 2.6 Theta notation visualization 

Source: https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-
complexity-analysis-of-algorithms/ 

G. Computational Complexity Theory 

There are considered three Types of Complexity: 

1) P (Polynomial Time) 

The class 𝑃 consists of all decision problems that can be solved 

by a deterministic Turing machine in polynomial time. This 

means there exists an algorithm that can solve any instance of 

the problem with a time complexity expressed as a polynomial 

function of the input size, denoted as 𝑂(𝑛𝑘), where 𝑛 is the size 

of the input and 𝑘 is a constant. Problems in 𝑃 are considered 

efficiently solvable because the time required to solve these 

problems grows at a manageable rate as the input size increases. 

Examples of problems in 𝑃 include sorting algorithms (e.g., 

quicksort, mergesort), graph algorithms (e.g., shortest path), 

and basic arithmetic operations. The significance of class 𝑃 lies 

in its practical applicability; algorithms that run in polynomial 

time are generally feasible to execute even for reasonably large 

inputs, making 𝑃 a critical class for real-world problem-solving. 

2) NP (Nondeterministic Polynomial Time) 

The class 𝑁𝑃 includes all decision problems for which a given 

solution can be verified in polynomial time by a deterministic 

Turing machine. Unlike class 𝑃, where the solution itself can 

be found in polynomial time, 𝑁𝑃 problems may not have 

known efficient solving algorithms, but if a solution is 

provided, its correctness can be checked quickly. This implies 

that for an 𝑁𝑃 problem, while finding a solution might be 

computationally intensive, confirming that a solution is correct 

is relatively easy. Classic examples of 𝑁𝑃 problems include the 

traveling salesman problem, where the task is to determine the 

shortest possible route that visits a set of cities and returns to 

the origin, and the Boolean satisfiability problem (SAT), which 

involves determining if there is an assignment of truth values to 

variables that makes a Boolean expression true. The 

relationship between 𝑃 and 𝑁𝑃 is central to computational 

complexity theory, with the unresolved question of whether 

𝑃 = 𝑁𝑃 being one of the most profound open problems in 

computer science. 

3) NP-Hard 

NP-hard problems are those that are at least as difficult as the 

hardest problems in 𝑁𝑃. Formally, a problem 𝐿 is 𝑁𝑃 −
ℎ𝑎𝑟𝑑 if every problem in 𝑁𝑃 can be reduced to 𝐿 in polynomial 

time. This means that an efficient solution to an NP-hard 

problem would imply efficient solutions to all 𝑁𝑃 problems, 

making NP-hard problems highly significant in complexity 

theory. However, NP-hard problems do not have to be in NP; 

they may not even be decision problems. They often include 

optimization problems, such as the traveling salesman problem 

when formulated to find the shortest possible route (as opposed 

to merely deciding if a route shorter than a given length exists). 

Solving an NP-hard problem efficiently would have wide-

ranging implications, but currently, no polynomial-time 

algorithms are known for NP-hard problems, and they are 

generally considered intractable for large inputs. The concept 

of NP-hardness helps in understanding the relative difficulty of 

computational problems and guides researchers in focusing on 

approximation algorithms or heuristic methods for practical 

solutions. 

III. PROPOSED ALGORITHM 

A. Distance Calculation 

For calculating the distance of point one (𝑥1, 𝑦1) to point two 

(𝑥2, 𝑦2), this project will use Euclidean Distance for some 

purposes. One of the purposes is to gain the detailed and exact 

value of calculated distance. That is important because to get 

the closest pair of points, we need to have the precise value of 

distance to minimize duplication points within the result. In 

other words, using Euclidean Distance method is one of the 

optimization that is used for this algorithm.  

To calculate the distance using Euclidean Distance method, 

given two points 𝑝1 (𝑥1, 𝑦1) and 𝑝2 (𝑥2, 𝑦2) , the value of 

Euclidian Distance is 

 

𝑑 =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 

Therefore, in the program we need math library to calculate the 

Euclidean Distance 

B. Divide and Conquer (main purpose) 

Divide and Conquer is the algorithm that is created for 

optimizing the process of searching the closest pairs of points 

in robot collision avoidance. This algorithm was chosen 

because it fits the usability of the conditions by utilizing the 

recursive technique for better performance. The algorithm 

consists of three main steps: 

1) Divide: 

https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
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• The first step is to divide the set of points along a 

vertical line that bisects the plane into left and right 

subsets. 

• This dividing line is chosen such that it evenly splits the 

points, ensuring roughly equal numbers of points on 

each side. 

• The points are sorted based on their 𝑥-coordinates, and 

the median point is selected as the dividing point.This 

division reduces the problem into two smaller 

subproblems, each containing a subset of the original 

points. 

2) Conquer: 

• Recursively, the algorithm finds the closest pair of 

points in each of the left and right subsets.  

• If the number of points in either subset is small enough 

(e.g., two or three points), a brute force approach is 

used to find the closest pair directly.  

• For larger subsets, the divide and conquer algorithm is 

applied recursively to each subset to find their closest 

pairs. 

3) Combine: 

• Once the closest pairs of points in the left and right 

subsets are found, determine the minimum distance 𝛿 

between any pair of points that spans the dividing line. 

•  Check if there exist closer pairs of points that cross 

the dividing line. To do this, consider only those points 

that lie within a distance 𝛿 of the dividing line on either 

side. Sort these points by their 𝑦-coordinates and 

iterate through them to find any pairs with distances 

smaller than 𝛿.  
• Update 𝛿 if a closer pair is found. 

•  Return the pair of points with the smallest distance 

found among the left, right, and across-divide pairs. 

These steps systematically ensures that the divide and 

conquer algorithm efficiently identifies the closest pair of 

points in the set. The combination of recursion and careful 

consideration of points near the dividing line allows for an 

optimal solution to be found. 

C. Brute Force (comparison purpose) 

The Brute Force implementation on closest pairs of points 

search is used to compare the Divide and Conquer algorithm 

implementation to the same exact problem performance. The 

Brute Force algorithm also provides the sample of the time 

execution comparison that helps the analysis by providing 

proper evidence. The Brute Force algorithm in this case is the 

exact same implementation of Brute Force algorithm on 

Sorting. This is because the Brute Force algorithm 

implementation in this problem requires the Brute Force 

Exhaustive behavior as the Brute Force sort does. Given the set 

of points 𝑝 (𝑥𝑝 , 𝑦𝑝), the Brute Force method steps:  

1) Generate All Pair Combinations: 

The brute force method involves generating all possible 

pair combinations of points from the given set. For 𝑛 

points, this results in 
 𝑛(𝑛−1)

2
  pairs. 

2) Calculate Distances: 

For each pair of points, calculate the Euclidean distance 

between them using the distance formula: 

 𝑑 =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2  

3) Find Minimum Distance: 

After computing distances for all pairs, identify the pair 

with the smallest distance. This involves iterating through 

all computed distances and keeping track of the minimum 

distance found so far. The pair of points corresponding to 

the minimum distance is the closest pair. 

4) Return Result: 

Once the closest pair is identified, return the pair of points 

along with their distance. 

IV. PROGRAM IMPLEMENTATION 

The program implementation consists of three main sub-

program which are The Euclidean Distance implementation, 

The Divide and Conquer implementation. And The Brute Force 

implementation. Those algorithm codes can be visualized as the 

cut of program such as: 

A. Euclidean Distance Implementation 

 

 
Fig 4.1 The Euclidean Distance Code 

Source: Author Creation 

B. Brute Force Implementation 

 

 
Fig 4.2 The Brute Force Code 

Source: Author Creation 

C. Divide and Conquer Implementation 
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Fig 4.3 The Divide and Conquer Code 

Source: Author Creation 

V. RESULT AND ANALYSIS 

A. Result 

The result of the program when executed is measured three 

times and each attempt differs to its number of points, 

starting from 10 and incrementing by multiplying by 10. 

The result of three attempts such as 

1) Attempt 1 (n=10) 

 
Fig 5.1 Result 1 (n=10) 

Source: Athor Creation 

2) Attempt 2 (n=100) 

 
Fig 5.2 Result 2 (n=100) 

Source: Athor Creation 

 

3) Attempt 3 (n=1000) 

 
Fig 5.3 Result 3 (n=1000) 

Source: Athor Creation 

Using the result data, we can map the result to be a table as 

below 

 

 

Number of Points 

(n) 

Divide and 

Conquer Time 

Execution (ms) 

Brute Force Time 

Execution (ms) 

10 0.229 0.076 

100 1.331 4.418 

1000 27.578 584.587 
Table 5.1 Test Execution Result Table 

B. Analysis 

In robot collision avoidance, efficiently identifying the closest 

pair of points among detected obstacles is critical for safe and 

effective navigation. Two primary algorithms for solving the 

closest pair of points problem are the brute force method and 

the divide and conquer method. This analysis provides a 

detailed comparison of these two algorithms, focusing on their 

implementation, time complexity, and computational 

complexity, with specific attention to their application in robot 

collision avoidance. 

1) Brute Force Algorithm 

The brute force algorithm for finding the closest pair of points 

involves generating all possible pairs of points from the given 

set, calculating the Euclidean distance for each pair, and then 

identifying the pair with the smallest distance. This method 

involves iterating through all possible pairs, which results in 
𝑛(𝑛−1)

𝑛
 comparisons for 𝑛 points. The brute force algorithm has 

a time complexity of 𝑂 (𝑛2) due to this exhaustive search 

through all pairs. This quadratic growth makes the brute force 

method inefficient for large datasets, although it is 

straightforward and easy to implement. Despite its simplicity, 

the computational expense becomes significant as the number 

of points increases, making it less practical for real-world 

applications involving large numbers of points. It is important 

to note that the closest pair of points problem falls into the class 

𝑃, as it can be solved in polynomial time by the brute force 

metho 

2) Divide and Conquer Algorithm 

The divide and conquer algorithm for finding the closest pair of 

points involves dividing the set of points into two subsets along 

a median vertical line, recursively finding the closest pair of 

points in each subset, and then combining the results to identify 

the overall closest pair. The combination step involves 

calculating the minimum distance from the left and right 

subsets, identifying points within this minimum distance near 

the dividing line, and checking these points for closer pairs. The 

divide and conquer algorithm has a time complexity of 

𝑂( 𝑛𝑙𝑜𝑔(𝑛) ),which is more efficient than the brute force 

method for large datasets. This method's space complexity is 

𝑂(𝑛) due to the space needed for recursive stack calls and 

temporary arrays used during merging. While more complex to 

implement, the divide and conquer algorithm's efficiency for 

large datasets makes it highly suitable for applications requiring 

quick and accurate computations, such as robot collision 

avoidance. Similar to the brute force method, the closest pair of 

points problem remains in class 𝑃 when using the divide and 

conquer approach. 
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3)  Comparative Analysis Using Empirical Data 

The empirical data provided illustrates the performance of both 

algorithms across different numbers of points. For 𝑛 = 10, the 

brute force method has an execution time of 0.076 𝑚𝑠, whereas 

the divide and conquer method takes 0.229 𝑚𝑠. At this small 

scale, the brute force method performs slightly better due to its 

lower overhead.  

As the number of points increases to 𝑛 = 100, the brute force 

method's execution time increases to 4.418 𝑚𝑠, while the 

divide and conquer method's execution time is significantly 

lower at 1.331 𝑚𝑠. This demonstrates the quadratic growth of 

the brute force method, making the divide and conquer method 

more efficient for larger datasets. 

For 𝑛 = 1000, the brute force method's execution time 

escalates to 584.587 𝑚𝑠, while the divide and conquer 

method's execution time remains relatively low at 27.578 𝑚𝑠. 

This vast difference highlights the superior scalability of the 

divide and conquer method, as it handles large datasets much 

more efficiently. 

VI. CONCLUSION 

The brute force method is simple to implement and works well 

for small datasets, but its 𝑂(𝑛2) time complexity makes it 

impractical for large-scale problems due to the exponential 

growth in computational time. In contrast, the divide and 

conquer algorithm, with its 𝑂( 𝑛 log(𝑛) ) time complexity, 

provides a much more efficient solution for large datasets, 

making it highly suitable for real-time applications like robot 

collision avoidance where quick and efficient computations are 

critical. 

VII. REVIEW 

Overall, the paper provides a thorough and well-structured 

analysis of the brute force and divide and conquer algorithms 

for finding the closest pair of points in the context of robot 

collision avoidance. The theoretical explanations are detailed 

and clear, and the empirical analysis robustly supports the 

claims about each algorithm's performance. The paper 

effectively bridges the gap between theoretical computational 

geometry and practical robotic applications, making a strong 

case for the use of the divide and conquer algorithm in real-

world scenarios. The review highlights the paper's clarity, 

thoroughness, and practical relevance, making it a valuable 

contribution to the field of robotic collision avoidance.  

In addition, it also must be noted that this paper only covers the 

divide and conquer implementation on robot collision 

avoidance by implementing it in the closest pair of points of 

each object search. The rest doesn’t get covered enough in this 

paper. For example, avoidance program, which consists of how 

robot reacts to avoid an obstacle, and the movements of 

avoidance in simulation are not included in this paper. This is 

the picture of how robot avoids in simulation using Gazebo 

Simulator: 

 

 
Fig 7.1 Picture of Robot Avoiding Obstacles in Gazebo Simulator 

Source: Author Creation 

That is the picture of the simulation, the robot successfully 

avoid the obstacles which are cones in this case. The simulation 

is also recorded and saved as a video in link below. The video 

also covers the explanation of the algorithms and the 

demonstration of the algorithm using robot simulator. 

VIDEO LINK AT YOUTUBE  

Here is the link that consists of the concise explanation of 

algorithms and the demonstration using Gazebo simulator: 
https://www.youtube.com/watch?v=-9z4Kl2WKGw 
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