
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Divide and Conquer Algorithm Implementation in

Robot Collision Avoidance
Algorithm Implementation and Evaluation

Albert Ghazaly – 13522150

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: albertghzly@gmail.com

Abstract— This paper introduces a new approach to robot

collision avoidance by using the divide and conquer algorithm to

find the closest pairs of objects. Ensuring robots navigate safely

without collisions is essential, especially as they operate in

increasingly complex environments. Many existing methods are

often slow or struggle to handle a large number of obstacles

effectively. Our method breaks down the problem into smaller

parts, solves each part separately, and then combines the results.

This makes the process faster and more efficient. We tested our

approach in different simulated settings and found that it

improves both speed and accuracy. This paper explains how the

algorithm works, how we implemented it, and how well it

performed in our tests, showing its promise for real-world robotic

applications.

Keywords— Robot collision avoidance, divide and conquer

algorithm, closest pair of points problem, time complexity

I. INTRODUCTION

Robotic technology has advanced significantly, leading to a
new era where robots must navigate complex environments
safely and efficiently. A critical component of this navigation is
collision avoidance. Collision avoidance is defined, according to
various sources, as the ability to prevent collisions with
obstacles while moving through an environment. The primary
focus of this paper is to enhance collision avoidance by applying
the divide and conquer algorithm to identify the closest pairs of
objects. Identifying these pairs is crucial because it allows the
robot to predict potential collision points and adjust its path
accordingly.

Traditional methods for collision avoidance, such as
potential field approaches and reactive techniques, often
encounter limitations in terms of computational efficiency and
scalability. These methods can struggle to process large numbers
of obstacles quickly enough to ensure real-time responsiveness,
potentially leading to suboptimal navigation paths or collisions.
Our approach addresses these challenges by breaking down the
collision avoidance problem into smaller, more manageable
parts, solving each part individually, and then combining the
results. This strategy improves both the speed and efficiency of
the process.

In this paper, we will not only explain the divide and conquer
algorithm but also demonstrate its implementation and results
through source code examples and experimental data. Our goal
is to show how this algorithm can be effectively used in real-
world robotic applications, enhancing both safety and
efficiency. We will discuss the time complexity of the algorithm,
which is crucial for understanding and analyzing its
performance.

The role of the divide and conquer algorithm in our approach
is to systematically decompose the problem of collision
avoidance. By focusing on the closest pair of objects, the
algorithm allows the robot to navigate through environments
more effectively. The divide and conquer strategy involves
splitting the environment into smaller sections, processing each
section to find close object pairs, and then merging the results to
form a comprehensive solution. This method ensures that the
robot can handle complex environments with numerous
obstacles efficiently.

In the following sections, we will describe the divide and
conquer algorithm in detail (Section II), Propose algorithm for
the program containing each step of implementation (Section
III), Implements the algorithm to a real program using python
(Section IV), and discuss the algorithm performance compared
to another algorithm (Section V), and analyses the cause of the
algorithm performance comparison (Section VI). Our research
shows that this approach not only improves computational
efficiency but also enhances the accuracy of collision avoidance
in dynamic environments.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

II. THEORETICAL BASIS

A. Divide and Conquer

Fig 2.1 Divide and Conquer Algorithm

Source: https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-

algorithm-data-structure-and-algorithm-tutorials/

The divide and conquer algorithm is a fundamental paradigm in

computer science, renowned for its efficiency in solving

complex problems by breaking them down into simpler

subproblems. The divide and conquer approach involves three

main steps:

1) Divide

 The first step in the divide and conquer paradigm is to divide

the original problem into smaller, independent subproblems.

This division is usually performed in a manner that the

subproblems are of approximately equal size, ensuring a

balanced workload. In the context of the closest pair problem,

the set of points (or objects) is typically divided based on a

median line.

2) Conquer.

Once the problem is divided into smaller subproblems, each

subproblem is solved recursively. The recursion continues until

the subproblems are small enough to be solved directly. In

many cases, this direct solution is straightforward and

computationally inexpensive

3) Combine

The final step involves combining the solutions of the

subproblems to form the solution to the original problem. This

is often the most intricate part of the divide and conquer

strategy, as it requires careful consideration to ensure that the

combined solution is correct and efficient.

B. Brute Force

Brute force is a straightforward method for solving problems by

exhaustively searching through all possible solutions and

selecting the best one. This approach involves systematically

checking every possible solution and evaluating its quality

against a predefined criterion. While conceptually simple, brute

force algorithms can be inefficient, especially for large problem

instances, as they require examining every possible solution.

Despite its simplicity, brute force can be useful for solving

small-scale problems or serving as a benchmark for evaluating

the performance of more sophisticated algorithms. In some

cases, optimizations can be applied to brute force algorithms to

improve their efficiency, such as pruning branches of the search

tree or using heuristic techniques to guide the search.

C. Euclidean Distance

Euclidean distance is a measure of the straight-line distance

between two points in a Euclidean space. It is calculated using

the Pythagorean theorem, which states that the square of the

hypotenuse (the side opposite the right angle) of a right triangle

is equal to the sum of the squares of the other two sides. In two-

dimensional space, the Euclidean distance between points

(𝑥1, 𝑦1) and (𝑥2, 𝑦2) is given by the formula:

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

Euclidean distance is commonly used in various fields,

including mathematics, physics, and computer science, as a

measure of similarity or dissimilarity between points or

objects in space. It serves as a fundamental tool in tasks such

as clustering, classification, and optimization.

D. Robot Collision Avoidance (RCA)

Fig 2.2 Robot Collision Avoidance

Source: https://www.intechopen.com/chapters/19455

Robot collision avoidance is a critical aspect of robotic

navigation, particularly in environments where robots operate

alongside humans or other objects. The primary goal of

collision avoidance is to prevent robots from colliding with

obstacles in their environment, thereby ensuring the safety of

both the robot and its surroundings.

In dynamic environments, such as warehouses, factories, or

public spaces, robots must navigate autonomously while

avoiding obstacles that may appear unexpectedly. Collision

avoidance algorithms continuously monitor the robot's

surroundings using sensors, cameras, or other perception

systems. These algorithms analyse the sensor data to detect

potential obstacles and determine the robot's path to avoid

collisions.

Several approaches can be used for robot collision avoidance,

including reactive methods, potential field methods, and model-

based planning. Reactive methods rely on simple rules or

behaviours to respond to immediate obstacles in the robot's

path. Potential field methods model the robot's environment as

a field of attractive and repulsive forces, guiding the robot away

from obstacles. Model-based planning algorithms use

https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-algorithm-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-algorithm-data-structure-and-algorithm-tutorials/
https://www.intechopen.com/chapters/19455

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

predictive models of the robot's environment to plan collision-

free paths.

Effective collision avoidance algorithms balance safety,

efficiency, and responsiveness. They must be capable of

adapting to changing environments and unpredictable obstacles

while ensuring that the robot can navigate efficiently towards

its goal.

E. Closest Pair of Points Problem

Fig 2.3 Closes Pair of Points Problem

Source: https://medium.com/@shenhuang_21425/improved-closest-pair-of-

points-37e79ade474d

The closest pair of points problem is a fundamental

computational problem with applications in various fields,

including computational geometry, pattern recognition, and

robotics. Given a set of 𝑛 points in a two-dimensional space,

the goal is to identify the pair of points with the smallest

distance between them.

Efficiently solving the closest pair problem is essential for

optimizing robotic navigation systems and ensuring safe

operation in dynamic environments. In the context of robot

collision avoidance, identifying the closest pairs of obstacles

allows the robot to predict potential collision points and adjust

its path accordingly.

Several algorithms exist for solving the closest pair problem,

with the divide and conquer approach being one of the most

efficient. The divide and conquer algorithm divides the problem

into smaller subproblems, recursively solves each subproblem,

and combines the solutions to find the overall closest pair of

points.

Other algorithms for solving the closest pair problem include

the brute force method, which involves comparing the distance

between every pair of points and selecting the pair with the

smallest distance. While brute force is simple, it is less efficient

than divide and conquer for large datasets.

Efficiently solving the closest pair problem is crucial for real-

time robotic applications, where quick decision-making is

essential for avoiding collisions and navigating complex

environments. By leveraging algorithms such as divide and

conquer, robots can effectively identify and avoid potential

collision points, ensuring safe and efficient navigation.

F. Time Complexity

In theoretical computer science, the time complexity is the

computational complexity that describes the amount of

computer time it takes to run an algorithm. Time complexity

is commonly estimated by counting the number of

elementary operations performed by the algorithm,

supposing that each elementary operation takes a fixed

amount of time to perform. The asymptotic notation, can be

used to measure time complexity of algorithm which are

Big-O notation, Omega notation, Theta notation.

1) Big-O notation (O-notation)

Big-O notation represents the upper bound of the running

time of an algorithm. Therefore, it gives the worst-case

complexity of an algorithm. If 𝑓(𝑛) describes the running

time of an algorithm, 𝑓(𝑛) is 𝑂(𝑔(𝑛)) if there exist a positive

constant 𝐶 and 𝑛0 such that, 0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛)

for all 𝑛 ≥ 𝑛0

Fig 2.4 Big-O notation visualization

Source: https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-

complexity-analysis-of-algorithms/

2) Omega notation (Ω-notation)

Omega notation represents the lower bound of the

running time of an algorithm. Thus, it provides the best case

complexity of an algorithm. Let 𝑔 and 𝑓 be the function from

the set of natural numbers to itself. The function 𝑓 is said to

be Ω(𝑔), if there is a constant 𝑐 > 0 and a natural number n0

such that 𝑐 ∗ 𝑔(𝑛) ≤ 𝑓(𝑛),

for all 𝑛 ≥ 𝑛0

https://medium.com/@shenhuang_21425/improved-closest-pair-of-points-37e79ade474d
https://medium.com/@shenhuang_21425/improved-closest-pair-of-points-37e79ade474d
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig 2.5 Omega notation visualization
Source: https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-

complexity-analysis-of-algorithms/

3) Theta notation (Θ-notation)

Theta notation represents the upper and the lower bound

of the running time of an algorithm, it is used for analysing

the average-case complexity of an algorithm. Let 𝑔 and 𝑓 be

the function from the set of natural numbers to itself. The

function 𝑓 is said to be 𝛩(𝑔), if there are constants 𝑐1, 𝑐2 > 0
and a natural number 𝑛0 such that 𝑐1 ∗ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ∗
𝑔(𝑛) , for all 𝑛 ≥ 𝑛0

Fig 2.6 Theta notation visualization

Source: https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-
complexity-analysis-of-algorithms/

G. Computational Complexity Theory

There are considered three Types of Complexity:

1) P (Polynomial Time)

The class 𝑃 consists of all decision problems that can be solved

by a deterministic Turing machine in polynomial time. This

means there exists an algorithm that can solve any instance of

the problem with a time complexity expressed as a polynomial

function of the input size, denoted as 𝑂(𝑛𝑘), where 𝑛 is the size

of the input and 𝑘 is a constant. Problems in 𝑃 are considered

efficiently solvable because the time required to solve these

problems grows at a manageable rate as the input size increases.

Examples of problems in 𝑃 include sorting algorithms (e.g.,

quicksort, mergesort), graph algorithms (e.g., shortest path),

and basic arithmetic operations. The significance of class 𝑃 lies

in its practical applicability; algorithms that run in polynomial

time are generally feasible to execute even for reasonably large

inputs, making 𝑃 a critical class for real-world problem-solving.

2) NP (Nondeterministic Polynomial Time)

The class 𝑁𝑃 includes all decision problems for which a given

solution can be verified in polynomial time by a deterministic

Turing machine. Unlike class 𝑃, where the solution itself can

be found in polynomial time, 𝑁𝑃 problems may not have

known efficient solving algorithms, but if a solution is

provided, its correctness can be checked quickly. This implies

that for an 𝑁𝑃 problem, while finding a solution might be

computationally intensive, confirming that a solution is correct

is relatively easy. Classic examples of 𝑁𝑃 problems include the

traveling salesman problem, where the task is to determine the

shortest possible route that visits a set of cities and returns to

the origin, and the Boolean satisfiability problem (SAT), which

involves determining if there is an assignment of truth values to

variables that makes a Boolean expression true. The

relationship between 𝑃 and 𝑁𝑃 is central to computational

complexity theory, with the unresolved question of whether

𝑃 = 𝑁𝑃 being one of the most profound open problems in

computer science.

3) NP-Hard

NP-hard problems are those that are at least as difficult as the

hardest problems in 𝑁𝑃. Formally, a problem 𝐿 is 𝑁𝑃 −
ℎ𝑎𝑟𝑑 if every problem in 𝑁𝑃 can be reduced to 𝐿 in polynomial

time. This means that an efficient solution to an NP-hard

problem would imply efficient solutions to all 𝑁𝑃 problems,

making NP-hard problems highly significant in complexity

theory. However, NP-hard problems do not have to be in NP;

they may not even be decision problems. They often include

optimization problems, such as the traveling salesman problem

when formulated to find the shortest possible route (as opposed

to merely deciding if a route shorter than a given length exists).

Solving an NP-hard problem efficiently would have wide-

ranging implications, but currently, no polynomial-time

algorithms are known for NP-hard problems, and they are

generally considered intractable for large inputs. The concept

of NP-hardness helps in understanding the relative difficulty of

computational problems and guides researchers in focusing on

approximation algorithms or heuristic methods for practical

solutions.

III. PROPOSED ALGORITHM

A. Distance Calculation

For calculating the distance of point one (𝑥1, 𝑦1) to point two

(𝑥2, 𝑦2), this project will use Euclidean Distance for some

purposes. One of the purposes is to gain the detailed and exact

value of calculated distance. That is important because to get

the closest pair of points, we need to have the precise value of

distance to minimize duplication points within the result. In

other words, using Euclidean Distance method is one of the

optimization that is used for this algorithm.

To calculate the distance using Euclidean Distance method,

given two points 𝑝1 (𝑥1, 𝑦1) and 𝑝2 (𝑥2, 𝑦2) , the value of

Euclidian Distance is

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

Therefore, in the program we need math library to calculate the

Euclidean Distance

B. Divide and Conquer (main purpose)

Divide and Conquer is the algorithm that is created for

optimizing the process of searching the closest pairs of points

in robot collision avoidance. This algorithm was chosen

because it fits the usability of the conditions by utilizing the

recursive technique for better performance. The algorithm

consists of three main steps:

1) Divide:

https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

• The first step is to divide the set of points along a

vertical line that bisects the plane into left and right

subsets.

• This dividing line is chosen such that it evenly splits the

points, ensuring roughly equal numbers of points on

each side.

• The points are sorted based on their 𝑥-coordinates, and

the median point is selected as the dividing point.This

division reduces the problem into two smaller

subproblems, each containing a subset of the original

points.

2) Conquer:

• Recursively, the algorithm finds the closest pair of

points in each of the left and right subsets.

• If the number of points in either subset is small enough

(e.g., two or three points), a brute force approach is

used to find the closest pair directly.

• For larger subsets, the divide and conquer algorithm is

applied recursively to each subset to find their closest

pairs.

3) Combine:

• Once the closest pairs of points in the left and right

subsets are found, determine the minimum distance 𝛿

between any pair of points that spans the dividing line.

• Check if there exist closer pairs of points that cross

the dividing line. To do this, consider only those points

that lie within a distance 𝛿 of the dividing line on either

side. Sort these points by their 𝑦-coordinates and

iterate through them to find any pairs with distances

smaller than 𝛿.
• Update 𝛿 if a closer pair is found.

• Return the pair of points with the smallest distance

found among the left, right, and across-divide pairs.

These steps systematically ensures that the divide and

conquer algorithm efficiently identifies the closest pair of

points in the set. The combination of recursion and careful

consideration of points near the dividing line allows for an

optimal solution to be found.

C. Brute Force (comparison purpose)

The Brute Force implementation on closest pairs of points

search is used to compare the Divide and Conquer algorithm

implementation to the same exact problem performance. The

Brute Force algorithm also provides the sample of the time

execution comparison that helps the analysis by providing

proper evidence. The Brute Force algorithm in this case is the

exact same implementation of Brute Force algorithm on

Sorting. This is because the Brute Force algorithm

implementation in this problem requires the Brute Force

Exhaustive behavior as the Brute Force sort does. Given the set

of points 𝑝 (𝑥𝑝 , 𝑦𝑝), the Brute Force method steps:

1) Generate All Pair Combinations:

The brute force method involves generating all possible

pair combinations of points from the given set. For 𝑛

points, this results in
 𝑛(𝑛−1)

2
 pairs.

2) Calculate Distances:

For each pair of points, calculate the Euclidean distance

between them using the distance formula:

 𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

3) Find Minimum Distance:

After computing distances for all pairs, identify the pair

with the smallest distance. This involves iterating through

all computed distances and keeping track of the minimum

distance found so far. The pair of points corresponding to

the minimum distance is the closest pair.

4) Return Result:

Once the closest pair is identified, return the pair of points

along with their distance.

IV. PROGRAM IMPLEMENTATION

The program implementation consists of three main sub-

program which are The Euclidean Distance implementation,

The Divide and Conquer implementation. And The Brute Force

implementation. Those algorithm codes can be visualized as the

cut of program such as:

A. Euclidean Distance Implementation

Fig 4.1 The Euclidean Distance Code

Source: Author Creation

B. Brute Force Implementation

Fig 4.2 The Brute Force Code

Source: Author Creation

C. Divide and Conquer Implementation

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig 4.3 The Divide and Conquer Code

Source: Author Creation

V. RESULT AND ANALYSIS

A. Result

The result of the program when executed is measured three

times and each attempt differs to its number of points,

starting from 10 and incrementing by multiplying by 10.

The result of three attempts such as

1) Attempt 1 (n=10)

Fig 5.1 Result 1 (n=10)

Source: Athor Creation

2) Attempt 2 (n=100)

Fig 5.2 Result 2 (n=100)

Source: Athor Creation

3) Attempt 3 (n=1000)

Fig 5.3 Result 3 (n=1000)

Source: Athor Creation

Using the result data, we can map the result to be a table as

below

Number of Points

(n)

Divide and

Conquer Time

Execution (ms)

Brute Force Time

Execution (ms)

10 0.229 0.076

100 1.331 4.418

1000 27.578 584.587
Table 5.1 Test Execution Result Table

B. Analysis

In robot collision avoidance, efficiently identifying the closest

pair of points among detected obstacles is critical for safe and

effective navigation. Two primary algorithms for solving the

closest pair of points problem are the brute force method and

the divide and conquer method. This analysis provides a

detailed comparison of these two algorithms, focusing on their

implementation, time complexity, and computational

complexity, with specific attention to their application in robot

collision avoidance.

1) Brute Force Algorithm

The brute force algorithm for finding the closest pair of points

involves generating all possible pairs of points from the given

set, calculating the Euclidean distance for each pair, and then

identifying the pair with the smallest distance. This method

involves iterating through all possible pairs, which results in
𝑛(𝑛−1)

𝑛
 comparisons for 𝑛 points. The brute force algorithm has

a time complexity of 𝑂 (𝑛2) due to this exhaustive search

through all pairs. This quadratic growth makes the brute force

method inefficient for large datasets, although it is

straightforward and easy to implement. Despite its simplicity,

the computational expense becomes significant as the number

of points increases, making it less practical for real-world

applications involving large numbers of points. It is important

to note that the closest pair of points problem falls into the class

𝑃, as it can be solved in polynomial time by the brute force

metho

2) Divide and Conquer Algorithm

The divide and conquer algorithm for finding the closest pair of

points involves dividing the set of points into two subsets along

a median vertical line, recursively finding the closest pair of

points in each subset, and then combining the results to identify

the overall closest pair. The combination step involves

calculating the minimum distance from the left and right

subsets, identifying points within this minimum distance near

the dividing line, and checking these points for closer pairs. The

divide and conquer algorithm has a time complexity of

𝑂(𝑛𝑙𝑜𝑔(𝑛)),which is more efficient than the brute force

method for large datasets. This method's space complexity is

𝑂(𝑛) due to the space needed for recursive stack calls and

temporary arrays used during merging. While more complex to

implement, the divide and conquer algorithm's efficiency for

large datasets makes it highly suitable for applications requiring

quick and accurate computations, such as robot collision

avoidance. Similar to the brute force method, the closest pair of

points problem remains in class 𝑃 when using the divide and

conquer approach.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

3) Comparative Analysis Using Empirical Data

The empirical data provided illustrates the performance of both

algorithms across different numbers of points. For 𝑛 = 10, the

brute force method has an execution time of 0.076 𝑚𝑠, whereas

the divide and conquer method takes 0.229 𝑚𝑠. At this small

scale, the brute force method performs slightly better due to its

lower overhead.

As the number of points increases to 𝑛 = 100, the brute force

method's execution time increases to 4.418 𝑚𝑠, while the

divide and conquer method's execution time is significantly

lower at 1.331 𝑚𝑠. This demonstrates the quadratic growth of

the brute force method, making the divide and conquer method

more efficient for larger datasets.

For 𝑛 = 1000, the brute force method's execution time

escalates to 584.587 𝑚𝑠, while the divide and conquer

method's execution time remains relatively low at 27.578 𝑚𝑠.

This vast difference highlights the superior scalability of the

divide and conquer method, as it handles large datasets much

more efficiently.

VI. CONCLUSION

The brute force method is simple to implement and works well

for small datasets, but its 𝑂(𝑛2) time complexity makes it

impractical for large-scale problems due to the exponential

growth in computational time. In contrast, the divide and

conquer algorithm, with its 𝑂(𝑛 log(𝑛)) time complexity,

provides a much more efficient solution for large datasets,

making it highly suitable for real-time applications like robot

collision avoidance where quick and efficient computations are

critical.

VII. REVIEW

Overall, the paper provides a thorough and well-structured

analysis of the brute force and divide and conquer algorithms

for finding the closest pair of points in the context of robot

collision avoidance. The theoretical explanations are detailed

and clear, and the empirical analysis robustly supports the

claims about each algorithm's performance. The paper

effectively bridges the gap between theoretical computational

geometry and practical robotic applications, making a strong

case for the use of the divide and conquer algorithm in real-

world scenarios. The review highlights the paper's clarity,

thoroughness, and practical relevance, making it a valuable

contribution to the field of robotic collision avoidance.

In addition, it also must be noted that this paper only covers the

divide and conquer implementation on robot collision

avoidance by implementing it in the closest pair of points of

each object search. The rest doesn’t get covered enough in this

paper. For example, avoidance program, which consists of how

robot reacts to avoid an obstacle, and the movements of

avoidance in simulation are not included in this paper. This is

the picture of how robot avoids in simulation using Gazebo

Simulator:

Fig 7.1 Picture of Robot Avoiding Obstacles in Gazebo Simulator

Source: Author Creation

That is the picture of the simulation, the robot successfully

avoid the obstacles which are cones in this case. The simulation

is also recorded and saved as a video in link below. The video

also covers the explanation of the algorithms and the

demonstration of the algorithm using robot simulator.

VIDEO LINK AT YOUTUBE

Here is the link that consists of the concise explanation of

algorithms and the demonstration using Gazebo simulator:
https://www.youtube.com/watch?v=-9z4Kl2WKGw

ACKNOWLEDGMENT

. First of all, the Author would like to thank our lecturers in
Class 3, Mr. Rila Mandala and Mr. Monterico Adrian for
giving us numerous lesson. Not to forget, the Author would
also like to all the teachers in ITB, including Mr. Rinaldi
Munir, for striving to share knowledge to us while knowing it
is not easy to handle many students at the same time. Lastly,
the Author would like to tell that The lesson that you taught
was the reason the Author can accomplish this paper

REFERENCES

[1] https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-
algorithm-data-structure-and-algorithm-tutorials/, accessed 10 June 2024,
09.25 P.M.

[2] https://medium.com/@shenhuang_21425/improved-closest-pair-of-
points-37e79ade474d, accessed 10 June 2024, 10.00 P.M.

[3] https://botpenguin.com/glossary/computational-complexity-theory ,
accessed 10 June 2024, 10.20 P.M.

[4] https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-
complexity-analysis-of-algorithms/ . accessed 10 June 2024 10.30 P.M.

[5] https://www.intechopen.com/chapters/19455, accessed 11 June 2024
09.00 A.M.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Albert Ghazaly (13522150)

https://www.youtube.com/watch?v=-9z4Kl2WKGw
https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-algorithm-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-divide-and-conquer-algorithm-data-structure-and-algorithm-tutorials/
https://medium.com/@shenhuang_21425/improved-closest-pair-of-points-37e79ade474d
https://medium.com/@shenhuang_21425/improved-closest-pair-of-points-37e79ade474d
https://botpenguin.com/glossary/computational-complexity-theory
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.geeksforgeeks.org/types-of-asymptotic-notations-in-complexity-analysis-of-algorithms/
https://www.intechopen.com/chapters/19455

